

## Liquid state

- 1) On cooling of gas a lose of **kinetic energy** (heat) and ♥ in the velocity of molecules.
- 2)On pressing molecules are brought within sphere of **VDW forces** and G pass to L state.
- 3) Liquids are considerably denser than gases and occupy a definite volume
- 4)Transition is depend on both **T** and **P**.

5)Critical temperature: above which impossible to liquefy gas irrespective of the pressure (liquid not exist).

6)Critical pressure: pressure required to liquefy gas at CT



### COLLEGE OF PHARMACY UNIVERSITY OF BASRAH



# Methods of achieving liquefaction

- ➤ Use of freezing mixtures.
- Adiabatic expansion of ideal gases (no transfer or gain of heat), in which we have cooling occur due to collision frequency of gas within a flask.
- ➤ Joule-Thomson effect = Expansion of a highly compressed non-ideal gas into a region of low pressure, causes cooling? Due to expending of energy in overcoming the cohesive forces of attraction between molecules. Precooling the gas before expansion may enhance liquefaction.



### **Boiling point**

When and where occur??

b.p. for water is 100° C at 760mmHg

b.p. for water is 97.7° C at 700mmHg

b.p. for water is 20° C at 17.5mmHg



- Bp û with û in mwt of hydrocarbons, alcohols and carboxylic acids ???
- Branching cause a  $\Psi$ , how???
- Ethanol shows higher Bp than corresponding hydrocarbons as a results of H-bond.
- Carboxylic acid have abnormal BP compare with HC of similar no of atoms?

### COLLEGE OF PHARMACY UNIVERSITY OF BASRAH



### Solid and crystalline state:

- ➤ Definite shapes and an orderly arrangement of units.
- ➤ Unlike gases , uncompressible
- The structural units of crystalline solids arranged in fixed geometric patterns of lattices.
- > Crystal have definite m.p.
- > Crystallization as phenomenon may be occurred by precipitation of the compound out of solution and into an ordered array.
- > Crystal habit (morphology) depend on the nature of the molecules and affected by temp, pressure, type of solvent, salt formation









## Melting point and Heat of fusion

- The temperature at which a liquid passes into the solid state is known as the freezing point, it is also the melting point of a pure crystalline compound.
- Or the temperature at which the pure liquid and solid exist in equilibrium.
- The heat (energy) absorbed when 1 g of a solid melts or the heat liberated when it freezes is known as the latent heat of fusion.
- For water (ice) it is 0°C, Latent heat of fusion: = 80cal/gm
- It is affected by the pressure applied

22





## Liquid crystalline state (mesophase):

- The name describe this state as intermediate bet L and S states.
- Liquid state: movement of molecules in three directions in addition to free rotation the three axes.
- Solid state: molecules are immobile and rotation is not readily possible.
- Types of liquid crystal according to movement and rotation:
  - · Smectic.
  - Nemactic.

24



Supercritical

## Supercritical fluid state

 intermediate between those of L and G, with better ability to permeate solid substances (gas-like) and having high densities that can regulated by pressure (liquid-like).

 It is a mesophase formed from the gaseous state at certain conditions (T and P).



- Extraction
- Crystallization
- Preparation of some polymer mixtures.
- With advantages over liquid solvents like lower viscosity, more safe and lower energy requirements.
- Decaffeination of coffee and tea



25

### COLLEGE OF PHARMACY UNIVERSITY OF BASRAH



# Thermal analysis

- Methods for characterizing the physical and chemicals changes of materials upon heating or cooling.
- The most commonly used are DSC (differential scanning calorimetry), DTA (differential thermal analysis), TGA (thermogravimetric analysis) and DVS (Dynamic vapor sorption).
- It is important for determination of purity, polymorphism, moisture content, amorphous content, stability and compatibility with additives.

26



## **Phase Rule**

- •It is a relationship for determining the least number of **intensive variables** that can be changed without changing the equilibrium state of the system, or, alternately, the least number required to define the state(s) of the system.
- Intensive variable: are independent variables that do not depend on the volume or size of the phase, such as: <u>temperature</u>, <u>pressure</u>, <u>density</u>, and concentration.

27

### COLLEGE OF PHARMACY UNIVERSITY OF BASRAH



### **Phase Equilibrium and Phase Rule:**

By J. Willard Gibbs

MANUEL DE

$$F = C - P + 2$$

| System                                       | Number of<br>Phases | Degrees of<br>Freedom         | Comments                                                                                                                                                                                                                       |
|----------------------------------------------|---------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gas, liquid, or<br>solid                     | 1-                  | F = C - P + 2 = 1 - 1 + 2 = 2 | System is bivariant ( $F = 2$ ) and lies anywhere within the area marked<br>vapor, liquid, or solid in Figure 2–22. We must fix two variables,<br>e.g., $P_2$ and $t_2$ , to define system D.                                  |
| Gas-liquid,<br>liquid-solid, or<br>gas-solid | 2                   | F = C - P + 2 = 1 - 2 + 2 = 1 | System is univariant (F = 1) and lies anywhere along a fine between<br>two-phase regions, i.e., AO, BO, or CO in Figure 2-22. We must<br>fix one variable, e.g., either P <sub>1</sub> or t <sub>2</sub> , to define system E. |
| Gas-liquid-solid                             | 3                   | F = C - P + 2 = 1 - 3 + 2 = 0 | System is invariant (F = 0) and can lie only at the point of<br>intersection of the lines bounding the three-phase regions, i.e.,<br>point O in Figure 2-22.                                                                   |

\*Key: C = number of components; P = number of phases





